In this paper, the authors present a platform for the modeling of mold filling and solidification of binary alloys with properties similar to Mg alloys. A volume-of-fluid (VOF) based method is used to capture the interface between solid and liquid in binary alloys solidification process on a fixed non-uniform grid, developed for implementation in a colocated finite volume framework. Contrary to other works, to update the volume fraction (of fluid) in the field, a link between source-based type of energy equation and VOF reconstruction algorithm is described and implemented. A new approximation to the pressure gradient is presented to remove all ‘Spurious Currents’ [1] resulting from pressure jumps in the vicinity of the interface. Based upon the work presented, it is concluded that the present combination of the equations are not only computationally straightforward to implement and upgrade to a 3D problem, but also provides an excellent platform to capture the interface between constituents in a die-casting process including solidification and mold filling process. The current framework will be used in future works to characterize the local mechanical properties of Mg alloys by using information from simulation at the dendritic level.

This content is only available via PDF.
You do not currently have access to this content.