Recently the semi-permeable hollow fiber membrane (HFM) is finding promising applications in promoting axonal outgrowth for nerve repair and regeneration. It is of interest to model the phase inversion-based HFM fabrication process and control the fabricated HFM geometry. The effect of gravity and surface tension which is frequently ignored in general fiber spinning should be carefully addressed in HFM fabrication modeling. Both the volume of fluid (VOF) method and the scale analysis have been applied to appreciate the effect of gravity and surface tension on the HFM geometry profile. The VOF method-based simulation results reveal that both the gravity and/or surface tension significantly reduce the predicted radii/diameters, while the scale analysis reveals that the gravity or surface tension affects the HFM fabrication process dynamics. Both the approaches warrant the need of including the gravity and surface tension in HFM fabrication process modeling.

This content is only available via PDF.
You do not currently have access to this content.