This paper presents the modeling and prediction of the air flow, pressure and holding force produced by a non-contact Bernoulli gripper, which is essentially a radial air flow nozzle, used to handle small and large, rigid and non-rigid materials. Previous studies have demonstrated the turbulent behavior of the flow and the presence of a flow separation region at the nozzle of the gripper. Here, a Reynolds stress model has been implemented in a finite volume based segregated Reynolds-Averaged Navier-Stokes solver. Compressible air is modeled to capture the effect of the high flow velocities generated by the nozzle. In addition an experimental set up is designed to validate the model. Experimental results of air pressure and force agree favorably with those predicted by the model. This model could be used to understand the influence of handling variables such as the stand-off distance and air flow rate on the suction pressure distribution and lifting force acting on the handled object.
Skip Nav Destination
ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing
October 7–10, 2008
Evanston, Illinois, USA
Conference Sponsors:
- Manufacturing Engineering Division
ISBN:
978-0-7918-4852-4
PROCEEDINGS PAPER
Modeling and Prediction of the Flow, Pressure and Holding Force Generated by a Bernoulli Handling Device Available to Purchase
Xavier F. Brun,
Xavier F. Brun
Georgia Institute of Technology, Atlanta, GA
Search for other works by this author on:
Shreyes N. Melkote
Shreyes N. Melkote
Georgia Institute of Technology, Atlanta, GA
Search for other works by this author on:
Xavier F. Brun
Georgia Institute of Technology, Atlanta, GA
Shreyes N. Melkote
Georgia Institute of Technology, Atlanta, GA
Paper No:
MSEC_ICM&P2008-72472, pp. 351-358; 8 pages
Published Online:
July 24, 2009
Citation
Brun, XF, & Melkote, SN. "Modeling and Prediction of the Flow, Pressure and Holding Force Generated by a Bernoulli Handling Device." Proceedings of the ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. ASME 2008 International Manufacturing Science and Engineering Conference, Volume 2. Evanston, Illinois, USA. October 7–10, 2008. pp. 351-358. ASME. https://doi.org/10.1115/MSEC_ICMP2008-72472
Download citation file:
19
Views
Related Proceedings Papers
Related Articles
Modeling and Prediction of the Flow, Pressure, and Holding Force Generated by a Bernoulli Handling Device
J. Manuf. Sci. Eng (June,2009)
On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions
J. Fluids Eng (May,2005)
Turbulence Modeling and Computation of Viscous Transitional Flows for Low Pressure Turbines
J. Fluids Eng (December,1999)
Related Chapters
A Simple Carburetor
Case Studies in Fluid Mechanics with Sensitivities to Governing Variables
Antilock-Braking System Using Fuzzy Logic
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Introduction
Design and Analysis of Centrifugal Compressors