Composite textile reinforcement draping simulations aid in determining the processing conditions for a quality part and in finding the positions of the fibers after forming. This last point is essential for the structural computations of the composite part and for resin injection analyses in the case of LCM processes. Because the textile composite reinforcements are multiscale materials, continuous (macro) approaches and discrete (meso) approaches that model the yarns have been developed. The finite element that is proposed in this paper for textile fabric forming is composed of woven unit cells. The mechanical behaviour of these is analyzed by 3D computations at the mesoscale. The warp and weft directions of the woven fabric can be in an arbitrary direction with respect to the direction of the element side. This is very important in the case of multi-ply deep drawing and when using remeshing. The element is efficient because it is close to the physics of the woven cell while avoiding the very large number of unknowns in the discrete approach. A set of validation tests and forming simulations on single-ply and multi-ply fabrics is presented and shows the efficiency of the approach.

This content is only available via PDF.
You do not currently have access to this content.