Friction stir processing is an advanced manufacturing process in which a specially designed rotating pin is first inserted into the adjoining edges of the materials to be processed with a proper tool tilt angle and then move all along the adjoining edges. The pin produces frictional and plastic deformation heating in the processing zone. As the tool pin moves, materials are forced to flow around the pin. Material flows to the back of the pin, where it is extruded and forged behind the tool, consolidated and cooled under hydrostatic pressure conditions. The primary research about friction stir processing has been focused on aluminum alloys. In recent years many researchers have been trying to apply this technology for processing other alloys and materials including stainless steels, magnesium, titanium, and copper. In addition, this technology has been used to modify the microstructure of reinforced metal matrix composite materials. However, friction stir processing polymeric based materials are much less studied. Friction stir processing has the advantage of reducing distortion and defects in materials. It has potential to be used in manufacturing nanoparticle-reinforced polymeric composite materials. In this work, modeling the flow pattern and the distribution of nanoparticles in friction stir processed polymeric composite materials was performed. The internal pressure in friction stir processed composite materials was also derived, which may be used to predict the residual stress state in the nanocomposite material joint. It is found that the pressure in the joint is a function of radial position from the tool pin. The magnitude of the pressure is related to the tool geometry and the welding conditions such as tool rotating speed etc.
Skip Nav Destination
ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing
October 7–10, 2008
Evanston, Illinois, USA
Conference Sponsors:
- Manufacturing Engineering Division
ISBN:
978-0-7918-4851-7
PROCEEDINGS PAPER
Modeling the Flow and Distribution of Nanoparticles in Friction Stir Processed Polymeric Composite Materials
Yong X. Gan
Yong X. Gan
University of Toledo, Toledo, OH
Search for other works by this author on:
Yong X. Gan
University of Toledo, Toledo, OH
Paper No:
MSEC_ICM&P2008-72049, pp. 79-83; 5 pages
Published Online:
July 24, 2009
Citation
Gan, YX. "Modeling the Flow and Distribution of Nanoparticles in Friction Stir Processed Polymeric Composite Materials." Proceedings of the ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. ASME 2008 International Manufacturing Science and Engineering Conference, Volume 1. Evanston, Illinois, USA. October 7–10, 2008. pp. 79-83. ASME. https://doi.org/10.1115/MSEC_ICMP2008-72049
Download citation file:
4
Views
0
Citations
Related Proceedings Papers
Related Articles
Metallic Forging Using Electrical Flow as an Alternative to Warm/Hot Working
J. Manuf. Sci. Eng (February,2007)
Sheet Orientation Effects on the Hot Formability Limits of Lightweight Alloys
J. Manuf. Sci. Eng (December,2011)
Tensile Performance of Fused Deposition Modeling PA 6 Polymer Composites With Nanoparticle Reinforcement and/or Continuous Fiber Reinforcement
J. Micro Nano-Manuf (December,2019)
Related Chapters
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 1, Third Edition
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler & Pressure Vessel Code, Volume 1, Second Edition