Non-linear absorption of femtosecond laser pulses enables the induction of structural changes in the interior of bulk transparent materials without affecting their surface. This property can be exploited for the transmission welding of transparent dielectrics, three dimensional optical data storages and waveguides. In the present study, femtosecond laser pulses were tightly focused within the interior of bulk fused silica specimen. Localized plasma was formed, initiating rearrangement of the network structure. The change in material properties were studied through employment of spatially resolved Raman spectroscopy, atomic force microscopy and optical microscopy. The nature of the physical mechanisms responsible for the alteration of material properties as a function of process parameters is discussed.

This content is only available via PDF.
You do not currently have access to this content.