Non-traditional process like wire electro-discharge machining (WEDM) is found to show a promise for machining metal matrix composites (MMCs). However, the machining information for the difficult-to-machine particle-reinforced material is inadequate. This paper is focused on experimental investigation to examine the effect of electrical as well as non-electrical machining parameters on performance in wire electro-discharge machining of metal matrix composites (Al/SiCp). Taguchi orthogonal arrays were employed to study the effects of combinations of voltage, current, pulse on-time, off-time, and wire speed and wire tension on kerf width and cutting speed. Voltage, current, and on-time were found to have significant effect on cutting speed and kerf width. The optimum machining parameter combinations were obtained for cutting speed and kerf width separately. Further, multi-objective optimization was done using Taguchi-Grey relational analysis. The process has been improved with the aid of Grey relational analysis and Taguchi orthogonal array. The results have been verified with confirmation experiments.

This content is only available via PDF.
You do not currently have access to this content.