Cautery is a process to coagulate tissues and seal blood vessels using the heat. In this study, finite element modeling (FEM) was performed to analyze temperature distribution in biological tissue subject to cautery electrosurgical technique. FEM can provide detailed insight into the heat transfer in biological tissue to reduce the collateral thermal damage and improve the safety of cautery surgical procedure. A coupled thermal-electric FEM module was applied with temperature-dependent electrical and thermal properties for the tissue. Tissue temperature was measured at different locations during the electrosurgical experiments and compared to FEM results with good agreement. The temperature-dependent electrical conductivity has demonstrated to be critical. In comparison, the temperature-dependent thermal conductivity does not impact heat transfer as much as the electrical conductivity. FEM results show that the thermal effects can be varied with the electrode geometry that focuses the current density at the midline of the instrument profile.

This content is only available via PDF.
You do not currently have access to this content.