Surface integrity of a machined component in meeting the demands of a specific application requirement is defined by several characteristics. The residual stress profile at the surface and sub-surface of the workpiece is often one of these characteristics as it carries a direct effect on the fatigue life of a machined component. Machined residual stress is difficult to predict since it is governed by less than predictable high stresses, temperature gradients, and phase transformation occurring during the cutting process. A significant amount of effort have been dedicated by researchers to predict residual stress in a workpiece using analytical, experimental, and numerical modeling methods. Nonetheless, no method is available that could express the cutting process parameters and tool geometry parameters as functions of machined residual stress profile to allow process planning in achieving desired residual stress profile. This paper presents a physics-based approach to predict the shear zone characteristics during an orthogonal cutting operation. Using machined residual stress requirement at the surface as an input, information such as the shear angle, the shear stress in the shear zone, the depth of cut and consequently the cutting forces are obtained by inverse calculations procedure based on the rolling/sliding contact theory, the McDowell hybrid residual stress algorithm, and the specific cutting energy. This work constitutes a basis for further design and optimization of process and tool geometry parameters in achieving a specified residual stress profile. Experimental data are presented to validate the developed model.
Skip Nav Destination
ASME 2007 International Manufacturing Science and Engineering Conference
October 15–18, 2007
Atlanta, Georgia, USA
Conference Sponsors:
- Manufacturing Division
ISBN:
0-7918-4290-8
PROCEEDINGS PAPER
Specification of Shear Zone Characteristics in Achieving Desired Residual Stress Profile
Carl R. Hanna,
Carl R. Hanna
Georgia Institute of Technology, Atlanta, GA
Search for other works by this author on:
Steven Y. Liang,
Steven Y. Liang
Georgia Institute of Technology, Atlanta, GA
Search for other works by this author on:
Ru-Min Chao
Ru-Min Chao
National Cheng Kung University, Tainan, Taiwan
Search for other works by this author on:
Carl R. Hanna
Georgia Institute of Technology, Atlanta, GA
Steven Y. Liang
Georgia Institute of Technology, Atlanta, GA
Ru-Min Chao
National Cheng Kung University, Tainan, Taiwan
Paper No:
MSEC2007-31171, pp. 289-296; 8 pages
Published Online:
March 24, 2009
Citation
Hanna, CR, Liang, SY, & Chao, R. "Specification of Shear Zone Characteristics in Achieving Desired Residual Stress Profile." Proceedings of the ASME 2007 International Manufacturing Science and Engineering Conference. ASME 2007 International Manufacturing Science and Engineering Conference. Atlanta, Georgia, USA. October 15–18, 2007. pp. 289-296. ASME. https://doi.org/10.1115/MSEC2007-31171
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
A New Cutting Mechanics Model for Improved Shear Angle Prediction in Orthogonal Cutting Process
J. Manuf. Sci. Eng (April,2025)
Mechanism of Chip Segmentation in Orthogonal Cutting of Zr-Based Bulk Metallic Glass
J. Manuf. Sci. Eng (August,2019)
Analytical Modeling of Chip Geometry in High-Speed Ball-End Milling on Inclined Inconel-718 Workpieces
J. Manuf. Sci. Eng (February,2015)
Related Chapters
Nonmetallic Inclusions and Rolling Contact Fatigue
Bearing Steels: The Rating of Nonmetallic Inclusion
The Effect of Load Interaction and Sequence on the Fatigue Behavior of Notched Coupons
Cyclic Stress-Strain Behavior—Analysis, Experimentation, and Failure Prediction
Basic Features
Structural Shear Joints: Analyses, Properties and Design for Repeat Loading