Musculoskeletal conditions are a major health concern in United States because of a large aging population and increased occurrence of sport-related injuries. The need for bone substitutes is especially important. Traditional treatments of bone-defect have many limitations. Bone tissue engineering may offer a less painful alternative to traditional bone grafts with lower risk of infection. This research integrates biomimetic modeling, solid freedom fabrication (SFF), systems and control, and tissue engineering in one intelligent system for structured, highly porous biomaterials, which will be applied to bone scaffolds. Recently a new SFF-based fabrication system has been developed, which uses a pressurized extrusion to print highly biocompatible and water soluble sucrose bone scaffold porogens. The fabrication process for PCL scaffold implemented and tested using the newly developed porogen system. The resultant scaffold demonstrates the defined porous structure designed into the sucrose porogens. The viscosity of sucrose mixture has been tested and analyzed. The flow rate measurements of sucrose machine have been carried out. The input factor, which induced uncertainty in the flow rate of the microprinting system has been analyzed. The result showed that the reservoir pressure was dominant to determine the flow rate. This is very important for improving the quality control of our fabrication system.

This content is only available via PDF.
You do not currently have access to this content.