Quantitative understanding and prediction of cutting forces using worn tools is important to cutting process thermal modeling, tool life estimation, chatter prediction, and tool condition monitoring purposes. In this paper, a modeling approach in 3D oblique cutting is presented. The cutting configuration is featured with worn chamfered tools with a rounded tool nose under hard turning conditions, which are characterized by small feed rate and small depth of cut using a chamfered nose radius tool. The whole cutting edge is discretized into a number of elements, which follow the same chip flow angle. The force information is modeling by collectively considering the forces on each discretized elementary cutting edge based on a worn tool force model. The proposed model is further validated with the experimental hard turning studies. It is found that the chip flow angel does not change noticeably with tool wear. The predicted cutting and feed forces are relatively accurate compared with the predictions of the thrust forces. The force modeling accuracy is expected to be further improved by accurate consideration of the flank and crater wear geometry and generalization of the interaction forces between the discretized chip elements along the tool nose of the chamfer zone in the future studies.
Skip Nav Destination
ASME 2006 International Manufacturing Science and Engineering Conference
October 8–11, 2006
Ypsilanti, Michigan, USA
Conference Sponsors:
- Manufacturing Engineering Division
ISBN:
0-7918-4762-4
PROCEEDINGS PAPER
Worn Tool Force Modeling in 3D Oblique Cutting Under Hard Turning Conditions
Yong Huang
Yong Huang
Clemson University, Clemson, SC
Search for other works by this author on:
Yu Long
Clemson University, Clemson, SC
Yong Huang
Clemson University, Clemson, SC
Paper No:
MSEC2006-21063, pp. 509-518; 10 pages
Published Online:
October 2, 2008
Citation
Long, Y, & Huang, Y. "Worn Tool Force Modeling in 3D Oblique Cutting Under Hard Turning Conditions." Proceedings of the ASME 2006 International Manufacturing Science and Engineering Conference. Manufacturing Science and Engineering, Parts A and B. Ypsilanti, Michigan, USA. October 8–11, 2006. pp. 509-518. ASME. https://doi.org/10.1115/MSEC2006-21063
Download citation file:
6
Views
Related Proceedings Papers
Related Articles
Chatter Stability of General Turning Operations With Process Damping
J. Manuf. Sci. Eng (August,2009)
Modeling of Cutting Forces Under Hard Turning Conditions Considering Tool Wear Effect
J. Manuf. Sci. Eng (May,2005)
Related Chapters
On-Line Cutting Tool Condition Monitoring in Turning Processes Using Artificial Intelligence and Vibration Signals
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)
GA Based Multi Objective Optimization of the Predicted Models of Cutting Temperature, Chip Reduction Co-Efficient and Surface Roughness in Turning AISI 4320 Steel by Uncoated Carbide Insert under HPC Condition
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
On-Line a Predictive Model of Cutting Force in Turning with 3 Axis Acceleration Transducer Using Neural Network
International Conference on Advanced Computer Theory and Engineering (ICACTE 2009)