It is known that coolants play an important role in the grinding operation by reducing the heat that is generated on the work piece. As large amount of specific energy is spent in removing very small amount of the work piece in the finishing operations like grinding, the convective property of coolant plays a significant role in providing the required cooling effect. In today’s world, people have been customizing the coolant used for industry purposes as well as in the area of research. Thus the coolant property becomes an unknown quantity and the convection coefficient of the coolant, which dictates the quantity of heat removed from the workpiece during grinding, determines the coolant’s effectiveness. In this paper the convection coefficient of the coolant was determined for a particular velocity by computing and tuning of finite element model against experimental results. The convective property depends on various parameters such as thermal conductivity, heat capacity among others but in this paper, its dependence on velocity of the coolant is stressed. It was determined from the experimental results of surface grinding operation on workpiece and then comparing them with the finite element model simulated in ANSYS. By varying the convection coefficient parameter, the finite element model was fitted to the experimental results thus resulting in the determination of convective coefficient property of the coolant.

This content is only available via PDF.
You do not currently have access to this content.