Scratching experiments, using diamond styli and single point diamond tools, were performed to simulate Single Point Diamond Turning (SPDT). The results of these experiments were used to determine if a ductile response is possible, and then to determine the critical depth of cut or penetration depth for the ductile to brittle transition (DBT). The depths of the scratches produced at different loads were measured and correlated to the ductile and brittle response of the material. The DBT depth for Chemically Vapor Deposited (CVD) coated Silicon Carbide (SiC) samples was determined. The analysis for the critical depth (DBT) did confirm the possibility for SPDT of CVD coated SiC in the ductile regime. These results were further used for SPDT of CVD SiC. Post experimental analysis of the machined surface did reveal a final surface roughness of 8–20nm, successfully demonstrating ductile regime machining of CVD coated SiC.

This content is only available via PDF.
You do not currently have access to this content.