Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-11 of 11
Energy gap
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. MNHMT2016, Volume 1: Micro/Nanofluidics and Lab-on-a-Chip; Nanofluids; Micro/Nanoscale Interfacial Transport Phenomena; Micro/Nanoscale Boiling and Condensation Heat Transfer; Micro/Nanoscale Thermal Radiation; Micro/Nanoscale Energy Devices and Systems, V001T05A002, January 4–6, 2016
Paper No: MNHMT2016-6352
Abstract
With the rapid development of the supersonic aircraft technology, tremendously, the aircraft Mach numbers get higher and higher, but on the other hand, the working condition become worse and worse. The photonic crystal material which is formed by the periodic micro/nanoscale structures can generate the photonic band gaps, and the photonic band gaps could reflect the energy of the electromagnetic wave effectively. Consequently, the photonic crystal material turns into the newly-developing hotspot on the field of thermal protection for the supersonic aircraft. In this paper, the aircraft states of Mach 6 are set as the target operating condition, and 5 optimum proposals are presented for the structures of typical photonic crystal material. The energy which gets into the body material is calculated; Based on the theory of the electromagnetic field, using the method of transmission matrix and Plane Wave Expansion (PWE), the characteristics of the photonic band gaps for one-and-three dimensional photonic crystals are calculated. Finally, the characteristics of the photonic band gaps are discussed, and optimal design for the performance of the photonic crystal material thermal protection are proposed.
Proceedings Papers
Proc. ASME. MNHMT2016, Volume 1: Micro/Nanofluidics and Lab-on-a-Chip; Nanofluids; Micro/Nanoscale Interfacial Transport Phenomena; Micro/Nanoscale Boiling and Condensation Heat Transfer; Micro/Nanoscale Thermal Radiation; Micro/Nanoscale Energy Devices and Systems, V001T05A011, January 4–6, 2016
Paper No: MNHMT2016-6632
Abstract
Near-field thermophotovoltaic (NFTPV) devices have received much attention lately as attractive energy harvesting systems, whereby a heated thermal emitter exchanges super-Planckian near-field radiation with a photovoltaic (PV) cell to generate electricity. This work describes the use of a grating structure to enhance the power throughput of NFTPV devices, while increasing thermal efficiency by ensuring that a large portion of the radiation entering the PV cell is above the bandgap. The device is modeled as a one-dimensional high-temperature tungsten grating on a tungsten substrate that radiates photons to a room-temperature In 0.18 Ga 0.82 Sb PV cell through a vacuum gap of several tens of nanometers. Scattering theory is used along with the rigorous coupled-wave analysis to calculate the radiation exchange between the grating emitter and the PV cell. A parametric study is performed by varying the grating depth, period, and ridge width in the range that can be fabricated using available fabrication technologies. By optimizing the grating parameters, it is found that the power output can be improved by 40% while increasing the energy efficiency by 6% as compared with the case of a flat tungsten emitter. Reasons for the enhancement are investigated and found to be due to the surface plasmon polariton resonance, which shifts towards lower frequencies. This work shows a possible way of improving NFTPV and sheds light on how grating structures interact with thermal radiation at the nanoscale.
Proceedings Papers
Proc. ASME. MNHMT2016, Volume 1: Micro/Nanofluidics and Lab-on-a-Chip; Nanofluids; Micro/Nanoscale Interfacial Transport Phenomena; Micro/Nanoscale Boiling and Condensation Heat Transfer; Micro/Nanoscale Thermal Radiation; Micro/Nanoscale Energy Devices and Systems, V001T05A005, January 4–6, 2016
Paper No: MNHMT2016-6471
Abstract
The photon transport and energy conversion of a near-field thermophotovoltaic (TPV) system with a selective emitter composed of alternate tungsten and alumina layers and a photovoltaic cell sandwiched by electrical contacts are theoretically investigated in this paper. Fluctuational electrodynamics along with the dyadic Green’s function for a multilayered structure is applied to calculate the spectral heat flux, and photocurrent generation and electrical power output are solved from the photon-coupled charge transport equations. The tungsten and alumina layer thicknesses are optimized to match the spectral heat flux with the bandgap of TPV cell. The spectral heat flux is much enhanced when plain tungsten emitter is replaced with the multilayer emitter due to the mechanism of surface plasmon polariton coupling in the tungsten thin film. In addition, the invalidity of effective medium theory to predict photon transport in the near field with multilayer emitters is discussed. Effects of a gold back reflector and indium tin oxide front coating with nanometer thickness, which could practically act as the electrodes to collect the photon-generated charges on the TPV cell, are explored. Conversion efficiency of 23.7% and electrical power output of 0.31 MW/m 2 are achieved at 100 nm vacuum gap when the emitter and receiver are respectively at temperatures of 2000 K and 300 K.
Proceedings Papers
Proc. ASME. MNHMT2016, Volume 1: Micro/Nanofluidics and Lab-on-a-Chip; Nanofluids; Micro/Nanoscale Interfacial Transport Phenomena; Micro/Nanoscale Boiling and Condensation Heat Transfer; Micro/Nanoscale Thermal Radiation; Micro/Nanoscale Energy Devices and Systems, V001T06A003, January 4–6, 2016
Paper No: MNHMT2016-6357
Abstract
The utilization of solar energy in photovoltaics is limited due to the band gap of the materials. Hence, photovoltaic–thermoelectric hybrid system was proposed to utilize solar energy in the full spectrum of AM1.5G. On this basis, a novel design of GaAs solar cell is proposed in this paper for the full spectrum absorption in the cell structure, which consists of an ultra-thin GaAs layer with nanocones on the surface and a nanogrid–AZO–Ag back contact. The Finite Difference Time Domain method is used to analyze the full spectrum absorption features for TE and TM polarizations over the incident angles varying from 0° to 60°. The designed structure shows high absorption in the full spectrum. For GaAs layer, it is shown that the solar usable energy for GaAs solar cells in 300–900nm is absorbed by GaAs almost perfectly due to the anti–reflection property of the nanocone array. The absorbed energy in the back contact in the longer wavelengths over 900nm is due to the Fabry-Perot and the localized plasmonic resonances. The structure can collect full-spectrum incident photons efficiently in GaAs solar cells for the application of photovoltaic–thermoelectric hybrid system.
Proceedings Papers
Veronika Stelmakh, Walker R. Chan, John D. Joannopoulos, Marin Soljacic, Ivan Celanovic, Kimberly Sablon
Proc. ASME. MNHMT2016, Volume 1: Micro/Nanofluidics and Lab-on-a-Chip; Nanofluids; Micro/Nanoscale Interfacial Transport Phenomena; Micro/Nanoscale Boiling and Condensation Heat Transfer; Micro/Nanoscale Thermal Radiation; Micro/Nanoscale Energy Devices and Systems, V001T05A015, January 4–6, 2016
Paper No: MNHMT2016-6698
Abstract
Thermophotovoltaic (TPV) energy conversion enables millimeter scale power generation required for portable microelectronics, robotics, etc. In a TPV system, a heat source heats a selective emitter to incandescence, the radiation from which is incident on a low bandgap TPV cell. The selective emitter tailors the photonic density of states to produce spectrally confined selective emission of light matching the bandgap of the photovoltaic cell, enabling high heat-to-electricity conversion efficiency. The selective emitter requires: thermal stability at high-temperatures for long operational lifetimes, simple and relatively low-cost fabrication, as well as spectrally selective emission over a large uniform area. Generally, the selective emission can either originate from the natural material properties, such as in ytterbia or erbia emitters, or can be engineered through microstructuring. Our approach, the 2D photonic crystal fabricated in refractory metals, offers high spectral selectivity and high-temperature stability while being fabricated by standard semiconductor processes. In this work, we present a brief comparison of TPV system efficiencies using these different emitter technologies. We then focus on the design, fabrication, and characterization of our current 2D photonic crystal, which is a square lattice of cylindrical holes fabricated in a refractory metal substrate. The spectral performance and thermal stability of the fabricated photonic crystal thermal emitters are demonstrated and the efficiency gain of our model TPV system is characterized.
Proceedings Papers
Walker R. Chan, Veronika Stelmakh, Marin Soljacic, John D. Joannopoulos, Ivan Celanovic, Christopher M. Waits
Proc. ASME. MNHMT2016, Volume 1: Micro/Nanofluidics and Lab-on-a-Chip; Nanofluids; Micro/Nanoscale Interfacial Transport Phenomena; Micro/Nanoscale Boiling and Condensation Heat Transfer; Micro/Nanoscale Thermal Radiation; Micro/Nanoscale Energy Devices and Systems, V001T06A005, January 4–6, 2016
Paper No: MNHMT2016-6695
Abstract
The increasing power demands of portable electronics and micro robotics has driven recent interest in millimeter-scale microgenerators. Many technologies (fuel cells, Stirling, thermoelectric, etc.) that potentially enable a portable hydrocarbon microgenerator are under active investigation. Hydrocarbon fuels have specific energies fifty times those of batteries, thus even a relatively inefficient generator can exceed the specific energy of batteries. We proposed, designed, and demonstrated a first-of-a-kind millimeter-scale thermophotovoltaic (TPV) system with a photonic crystal emitter. In a TPV system, combustion heats an emitter to incandescence and the resulting thermal radiation is converted to electricity by photovoltaic cells. Our approach uses a moderate temperature (1000–1200°C) metallic microburner coupled to a high emissivity, high selectivity photonic crystal selective emitter and low bandgap PV cells. This approach is predicted to be capable of up to 30% efficient fuel-to-electricity conversion within a millimeter-scale form factor. We have performed a robust experimental demonstration that validates the theoretical framework and the key system components, and present our results in the context of a TPV microgenerator. Although considerable technological barriers need to be overcome to realize a TPV microgenerator, we predict that 700–900 Wh/kg is possible with the current technology.
Proceedings Papers
Proc. ASME. MNHMT2013, ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer, V001T05A005, December 11–14, 2013
Paper No: MNHMT2013-22112
Abstract
Solar thermophotovoltaic (STPV) devices provide conversion of solar energy to electrical energy through the use of an intermediate absorber/emitter module, which converts the broad solar spectrum to a tailored spectrum that is emitted towards a photovoltaic cell [1]. While the use of an absorber/emitter device could potentially overcome the Shockley-Queisser limit of photovoltaic conversion [2], it also increases the number of heat loss mechanisms. One of the most prohibitive aspects of STPV conversion is the thermal transfer efficiency, which is a measure of how well solar energy is delivered to the emitter. Although reported thermophotovoltaic efficiencies (thermal to electric) have exceeded 10% [3], [4], previously measured STPV conversion efficiencies are below 1% [5], [6], [7]. In this work, we present the design and characterization of a nanostructured absorber for use in a planar STPV device with a high emitter-to-absorber area ratio. We used a process for spatially-selective growth of vertically aligned multi-walled carbon nanotube (MWCNT) forests on highly reflective, smooth tungsten (W) surfaces. We implemented these MWCNT/W absorbers in a TPV system with a one-dimensional photonic crystal emitter, which was spectrally paired with a low bandgap PV cell. A high fidelity, system-level model of the radiative transfer in the device was experimentally validated and used to optimize the absorber surface geometry. For an operating temperature of approximately 1200 K, we experimentally demonstrated a 100% increase in overall STPV efficiency using a 4 to 1 emitter-to-absorber area ratio (relative to a 1 to 1 area ratio), due to improved thermal transfer efficiency. By further increasing the solar concentration incident on the absorber surface, increased emitter-to-absorber area ratios will improve both thermal transfer and overall efficiencies for these planar devices.
Proceedings Papers
Proc. ASME. MNHMT2013, ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer, V001T05A007, December 11–14, 2013
Paper No: MNHMT2013-22230
Abstract
Photonic crystals is a kind of material with band gap, the photons in which frequencies are in the band gap cannot propagate in a structure. Band gap characteristics for an innovative high temperature thermal control structure, integrated with PCs are presented by numerical simulation based on electromagnetic theory. Focused on 3D PCs structure, the plane wave expansion method is applied, and effects of ball radius and dielectric constant on the band gap characteristics are simulated. In addition, the influencing trend of the bandwidth is also discussed.
Proceedings Papers
Tarun Mittal, Siddharth Saroha, Vishal Bhalla, Vikrant Khullar, Himanshu Tyagi, Robert A. Taylor, Todd P. Otanicar
Proc. ASME. MNHMT2013, ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer, V001T02A007, December 11–14, 2013
Paper No: MNHMT2013-22090
Abstract
The commonly used methods to harness solar energy are solar thermal and solar photovoltaic (PV). A new category photovoltaic/thermal (PV/T) hybrid combines these two technologies, and achieves higher combined efficiency. The challenge is to keep the operating temperature of the PV low and at the same time not compromise on the temperature of the thermal cycle. Various designs of PV/T hybrids (both flat plate and concentrated) have already been proposed which utilize air or water to remove the heat from PV cells in order to enhance the overall efficiency of PV/T hybrid collector. Recent papers have showed that nanofluids can be used as an optical filter to filter the required wavelength range (equivalent to the band gap of the PV cell) from solar spectra. Thus, the heating of PV cells can be significantly reduced and higher overall efficiencies can be achieved using selective absorption by nanofluids. In this study, a new design of a PV/T hybrid collector was proposed and two nanofluid filters that can be used with Silicon (Si) PV cells were identified and corresponding thermal and overall efficiencies of PV/T hybrid collector were calculated.
Proceedings Papers
Proc. ASME. MNHMT2009, ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer, Volume 2, 685-690, December 18–21, 2009
Paper No: MNHMT2009-18341
Abstract
Semiconductor thin films are pervasive in advanced technological devices. For example, the active region in a quantum cascade laser contains films of direct bandgap semiconductors with thicknesses of 1–10 nm [1]. Superlattices, periodic materials that contain films of alternating species with thicknesses as small as 1 nm, are being studied for their potential to increase the efficiency of thermoelectric energy conversion devices [2]. Because these film thicknesses are less than the mean free paths of the phonons in the corresponding bulk material, the thermal transport properties of semiconductor thin films are different than their corresponding bulk values [3]. To aid in the design of devices employing thin films, accurate models for the thermal transport properties of the film are required.
Proceedings Papers
Proc. ASME. MNHT2008, ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B, 15-23, June 6–9, 2008
Paper No: MNHT2008-52111
Abstract
Superlattices have been used to design thermoelectric materials with ultra-low thermal conductivities. Indeed, the thermoelectric figure of merit ZT varies as the inverse of the material thermal conductivity. However, the design of a thermoelectric material with ZT superior to the alloy limit usually fails with the superlattices because of two major drawbacks: First, a lattice mismatch can occur between the different layers of a superlattice as in a Si/Ge superlattice. This leads to the formation of defects and dislocations, which reduces the electrical conductivity and therefore avoids the increase of ZT compared to the alloy limit. On the other hand, the superlattices only affect heat transfer in one direction. To cancel heat conduction in the three spatial directions, we propose atomic-scale three-dimensional (3D) phononic crystals. Because the lattice constant of our phononic crystal is of the order of some nanometers, we obtain phonon confinement in the THz range and a nanomaterial with a very low thermal conductivity. This is not possible with the usual phononic crystals, which show band gaps in the sub-MHz range owing to their large lattice constant of the order of 1 mm. A period of our atomic-scale 3D phononic crystal is composed of a given number of diamond-like silicon cells forming a supercell. A periodic Si/Ge heterostructure is obtained since we substitute at each supercell center the Si atoms in a smaller number of cells by Ge atoms. The Ge atoms in the cells located at each supercell center form a box-like nanoparticle with a size that can be varied to obtain different atomic configurations of our nanomaterial. We also propose another design for our phononic crystal where we introduce a small number of diamond-like silicon cells at the center of a periodic supercell of diamond-like germanium cells. In this second design, we form box-like nanoparticles of Si atoms in a germanium matrix instead of boxlike nanoparticles of Ge atoms in a silicon matrix in the first design. With the dispersion curves computed by lattice dynamics and a general equation, we obtain the thermal conductivities of several atomic configurations of our phononic crystal. Compared to a bulk material, the thermal conductivity can be reduced by at least one order of magnitude in our phononic crystal. This reduction is only due to the phonon group velocities, and we expect a further decrease owing to the diminution of the phonon mean free path in our phononic crystal.