The enhanced heat transfer of nanofluids is shown not to be caused by the increase in thermal conductivity based on the concentration of nanoparticles (NPs) given by the longstanding Hamilton and Crosser (HC) mixing rules. Instead, heat transfer is enhanced because quantum mechanics (QM) restricts the specific heat of NPs to vanish, the consequence of which is that thermal kT energy absorbed from collisions of solvent molecules cannot be conserved by an increase in temperature. Conservation may only proceed by the QED induced up-conversion of the low frequency absorbed kT energy to the EM frequency of the NP, typically in the VUV. Here EM stands for electrodynamics, QED for quantum electrodynamics, and VUV for vacuum ultraviolet. The EM confinement is quasi-bound so that the VUV radiation promptly leaks from the NPs. Classically, collisions increase the NP temperature with EM emission occurring in the far infrared (FIR) that is absorbed with little penetration at the NP surface. But the VUV is absorbed at large penetrations, thereby enhancing heat transfer in proportion to the number of NPs without increasing the nanofluid conductivity — the process called QED induced heat transfer. Nanofluid conductivity given by the HC mixing rules for NPs in solvents is still valid and need not be modified.
Skip Nav Destination
ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer
December 18–21, 2009
Shanghai, China
Conference Sponsors:
- Nanotechnology Institute
ISBN:
978-0-7918-4389-5
PROCEEDINGS PAPER
Nanofluids by Quantum Mechanics
Thomas Prevenslik
Thomas Prevenslik
Discovery Bay, Hong Kong, China
Search for other works by this author on:
Thomas Prevenslik
Discovery Bay, Hong Kong, China
Paper No:
MNHMT2009-18014, pp. 387; 1 page
Published Online:
October 26, 2010
Citation
Prevenslik, T. "Nanofluids by Quantum Mechanics." Proceedings of the ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer, Volume 1. Shanghai, China. December 18–21, 2009. pp. 387. ASME. https://doi.org/10.1115/MNHMT2009-18014
Download citation file:
105
Views
Related Proceedings Papers
Related Articles
Specific Heat Measurement of Three Nanofluids and Development of New Correlations
J. Heat Transfer (July,2009)
Nanofluids: From Vision to Reality Through Research
J. Heat Transfer (March,2009)
Thermal Properties of PVP Cryoprotectants With Nanoparticles
J. Nanotechnol. Eng. Med (May,2011)
Related Chapters
How to Use this Book
Thermal Spreading and Contact Resistance: Fundamentals and Applications
The MCRT Method for Participating Media
The Monte Carlo Ray-Trace Method in Radiation Heat Transfer and Applied Optics
Simultaneous Thermal Conductivity and Specific Heat Measurements of Thin Samples by Transient Joule Self-Heating
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)