According to the classic thermal resistance network model of the heat pipe, a quasi-two-dimensional theoretical thermal resistance model for the horizontal axial grooved heat pipe (AGHP) under normal conditions is presented. The contact type between liquid working fluid and groove wall at various axial positions are considered. The two-dimensional mass balance equation and momentum equation are adopted to predict the contact type between liquid working fluid and groove wall, contact point position and the radius of curvature of liquid pool. For the condensate thickness and liquid pool depth, three cases are discussed. The liquid pool depth and circumference radius of curvature of each element along the axial direction can be obtained based on the force balance. The elemental thermal resistance is obtained by superposing the compound layer thermal resistance of liquid working fluid and wick, and conductivity thermal resistance of container wall. Paralleling connection the element thermal resistance at the evaporator and the condenser of the AGHP respectively, the thermal resistance of evaporator and condenser are obtained respectively. The overall thermal resistance of the AGHP can be gotten by adding the two parts thermal resistance. The filling amount of working fluid is the sum of vapor and liquid inner the AGHP. The amount of liquid working fluid is the sum of each element in all the grooves. The results from the model are matched the testing results and the traditional semi-empirical correlation.
Skip Nav Destination
ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer
June 6–9, 2008
Tainan, Taiwan
Conference Sponsors:
- Nanotechnology Institute
ISBN:
0-7918-4292-4
PROCEEDINGS PAPER
Investigation on the Steady Thermal Resistance of Axial Grooved Heat Pipe (AGHP)
Hanzhong Tao,
Hanzhong Tao
Nanjing University of Technology, Nanjing, China
Search for other works by this author on:
Hong Zhang,
Hong Zhang
Nanjing University of Technology, Nanjing, China
Search for other works by this author on:
Jun Zhuang
Jun Zhuang
Nanjing University of Technology, Nanjing, China
Search for other works by this author on:
Hanzhong Tao
Nanjing University of Technology, Nanjing, China
Hong Zhang
Nanjing University of Technology, Nanjing, China
Jun Zhuang
Nanjing University of Technology, Nanjing, China
Paper No:
MNHT2008-52021, pp. 931-940; 10 pages
Published Online:
June 22, 2009
Citation
Tao, H, Zhang, H, & Zhuang, J. "Investigation on the Steady Thermal Resistance of Axial Grooved Heat Pipe (AGHP)." Proceedings of the ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B. Tainan, Taiwan. June 6–9, 2008. pp. 931-940. ASME. https://doi.org/10.1115/MNHT2008-52021
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
Experimental Investigation of a Pulsating Heat Pipe Using Ferrofluid (Magnetic Nanofluid)
J. Heat Transfer (January,2012)
A Simplified Conduction Based Modeling Scheme for Design Sensitivity Study of Thermal Solution Utilizing Heat Pipe and Vapor Chamber Technology
J. Electron. Packag (September,2003)
An Investigation of Flat-Plate Oscillating Heat Pipes
J. Electron. Packag (December,2010)
Related Chapters
Resistance Mythology
Hot Air Rises and Heat Sinks: Everything You Know about Cooling Electronics Is Wrong
Irreversibility Analysis of Heat Exchanger Network Based on Equivalent Thermal Resistance
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Joint Thermal Resistance and Thermal Interface Materials
Thermal Management of Telecommunication Equipment, Second Edition