Thermal conductivities for single-walled carbon nanotubes (SWNTs) filled with water are calculated with non-equilibrium molecular dynamics (NEMD) simulation method. Simulation results demonstrate the thermal conduction for the tube filed with water is better than the pure nanotube at the same conditions. It is believed the translational movement of the water molecules along the tube axis helps carry energy from the hot bath to the heat sinks, which results in the increase of the thermal conductivities. In addition, with the introduction of the water molecules into the nanotube, the additional interaction between the carbon atoms and the water molecules provide extra channels for phonon transport, which further intensifies the energy transport along the nanotubes. The effects of the temperature variation and the tube length on the thermal conductivities are also analyzed in this paper.

This content is only available via PDF.
You do not currently have access to this content.