Optical devices which incorporate liquids as a fundamental part of the structure can be traced at least as far back as the 18th century where rotating pools of mercury were proposed as a simple technique to create smooth mirrors for use in reflecting telescopes. Modern microfluidic and nanofluidics has enabled the development of a present day equivalent of such devices centered on the marriage of fluidics and optics which we refer to as “Optofluidics.” In this review paper we will present an overview of our approach to the development of three different optofluidic devices. In the first of these we will demonstrate how the fusion of novel nanophotonic structures with micro- and nanofluidic networks can be used to perform ultrasensitive, label free biomolecular analysis. This will be done in the context of our newly developed devices for screening of Dengue and Influenza virus RNA. For the second class of device I will discuss and demonstrate how optical forces (scattering, adsorption and polarization) in solid and liquid core nanophotonic structures can be used to drive novel microfluidic processes. Some of the advanced analytical, numerical and experimental techniques used to investigate and design these systems will be discussed as well as issues relating to integration and their fabrication.

This content is only available via PDF.
You do not currently have access to this content.