Research on nanofluids has progressed rapidly since its enhanced thermal conductivity was identified about a decade ago. Much evidence shows that the enhancement of convective heat transfer is much higher than that of thermal conductivity only. The mechanism of such enhancement, however, is still unclear. This work reviews the mechanisms of convective heat transfer of nanofluids in a single channel, and identifies two most likely mechanisms: the modification of effective properties and the migration of nanoparticles under flow conditions. A numerical simulation based on a combined Euler and Lagrange method is investigated in this work to illustrate the feature of nanoparticle migration and the drawback of the effective property approach. The motion of discrete nanoparticles is determined by the Lagrangian trajectory method based on the Newton’s second law that includes influence of the body force, various hydrodynamic forces, and the Brownian and thermophoresis forces. The coupling of discrete particles with continuous flow is realized through the modification of the source term of the continuous equation. It concludes that the two-phase flow nature of nanofluids, especially the nanoparticle migration and the resultant non-uniform particle and effective property profile, needs to be considered to properly model the convective heat transfer.
Skip Nav Destination
ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer
June 6–9, 2008
Tainan, Taiwan
Conference Sponsors:
- Nanotechnology Institute
ISBN:
0-7918-4292-4
PROCEEDINGS PAPER
Mechanisms of Convective Heat Transfer of Nanofluids
Dongsheng Wen
Dongsheng Wen
University of London, London, UK
Search for other works by this author on:
Dongsheng Wen
University of London, London, UK
Paper No:
MNHT2008-52304, pp. 591-598; 8 pages
Published Online:
June 22, 2009
Citation
Wen, D. "Mechanisms of Convective Heat Transfer of Nanofluids." Proceedings of the ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B. Tainan, Taiwan. June 6–9, 2008. pp. 591-598. ASME. https://doi.org/10.1115/MNHT2008-52304
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
Heat Transfer Augmentation of Aqueous Suspensions of Nanodiamonds in Turbulent Pipe Flow
J. Heat Transfer (April,2009)
Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes
J. Heat Transfer (April,2008)
Heat Transfer Enhancement in Combined Convection Around a Horizontal Cylinder Using Nanofluids
J. Heat Transfer (August,2008)
Related Chapters
Materials and Methods of Synthesis
Silver Nanoparticles: Properties, Synthesis Techniques, Characterizations, Antibacterial and Anticancer Studies
Results and Discussion
Silver Nanoparticles: Properties, Synthesis Techniques, Characterizations, Antibacterial and Anticancer Studies