Heat transport in nanostructured material is a critical issue in the design of electronic devices. According to the size and the temperature, thermal properties of the considered medium can change. In order to appraise these modifications new simulation techniques based on phonon transport equation solution have been developed. In this field, the Monte Carlo method dedicated to phonon motion and collision modeling has prove to be efficient. In the present paper we propose a modified form of this method that takes into account short pulse heating in order to assess specific heat c and thermal conductivity k. The parameter assessment has been done using Laplace analysis of the Monte Carlo calculated temperature profiles at short and long times through asymptotic solutions fitting. These numerical tools have demonstrated to be efficient as c and k values obtained for bulk silicon at low and room temperatures confirmed it.

This content is only available via PDF.
You do not currently have access to this content.