Carbon dioxide bubble removal in anode diffusion layer is a critical technique in micro direct methanol fuel cells (μDMFCs) [1, 2]. By deriving a thermal lattice-Boltzmann model, we investigate the hydrophilic, thermal and geometric effects on the two-phase flow (CO2 bubbles in methanol-water solution) in a microchannel of a μDMFC. The dimension of the example microchannel is similar to the diffusion layer. The length is 15.9 μm while the width (or height) is 1.5 μm, which are equivalent to the averaged pore size of the porous diffusion layer. A two-dimensional, nine-velocity (D2Q9) thermal lattice-Boltzmann model (TLBM) was derived in this paper.
Volume Subject Area:
Microfluidics and Nanofluidics
This content is only available via PDF.
Copyright © 2008
by ASME
You do not currently have access to this content.