We propose in this work a structure of semiconductor thin films combined with a one-dimensional metallic grating which allows for selective improvement of thermal radiative absorptivity (also emissivity) of the structure. We numerically demonstrate with a 2-D rigorous coupled-wave analysis (RCWA) algorithm that the proposed structure exhibits enhanced spectral absorptivity (for p-polarization) for photon energy slightly above the gap energy of the semiconductor (silicon in this work). The enhanced absorptivity is explained as due to excitations of surface polaritons (SPs) in the grating region, along with interactions of multiple-order diffracted waves in the semiconductor layer. Furthermore, the enhanced absorptivity of the structure can be achieved for a wide range of incidence angles so that it may have potential applications in energy conversion purposes.

This content is only available via PDF.
You do not currently have access to this content.