The thermal properties of microelectromechanical systems (MEMS) devices are governed by the structure and composition of the constituent materials as well as the geometrical design. With the continued reduction of the characteristic sizes of these devices, experimental determination of the thermal properties becomes more difficult. In this study, the thermal conductivity of polycrystalline silicon (polysilicon) microbridges are measured with the transient 3ω technique and compared to measurements on the same structures using a steady state joule heating technique. The microbridges with lengths from 200 microns to 500 microns were designed and fabricated using the Sandia National Laboratories SUMMiT™ V surface micromachining process. The differences between the two measurements, which arise from the geometry of the test structures, are explained by bond pad heating and thermal boundary resistance effects.

This content is only available via PDF.
You do not currently have access to this content.