Superhydrophobic surfaces exhibit large contact angle and small hysteresis which promote liquid transport and enhance heat transfer. Here, liquid-vapor phase change behavior is reported on superhydrophobic surfaces with short carbon nanotubes deposited on micromachined posts, a two-tier texture mimicking the surface structure of lotus leaves. Compared to one-tier microtexture which energetically favors the Wenzel state, the two-tier texture with nanoscale roughness favors the Cassie state, the desired superhydrophobic state. During droplet evaporation, the two-tier texture delays the transition from Cassie to Wenzel state. Using two-tier texture with hexadeconethiol coating, continuous dropwise condensation was demonstrated for the first time on engineered superhydrophobic surfaces.

This content is only available via PDF.
You do not currently have access to this content.