In this work, extensive equilibrium molecular dynamics simulations are conducted to study the shear viscosity of nanocolloidal dispersion. Strong oscillation of the pressure tensor autocorrelation function is observed. The computational domain contains solvent of liquid argon at 143.4 K and spherical particles with volume fraction of 3%. By studying the effect of the particle size, particle density, and acoustic impedance, it is found for the first time that the stress wave scattering/reflecting at the liquid-particle interface due to acoustic mismatch plays a critical important role in the oscillation of pressure tensor autocorrelation function. The Brownian motion/vibration of solid particles is considered to have little effect on the oscillation of pressure tensor autocorrelation function curve except the frequency. And when the particle size is comparable with the wavelength of stress wave, the diffraction of stress wave happens at the interface that will also weaken the oscillation of pressure tensor autocorrelation function.

This content is only available via PDF.
You do not currently have access to this content.