The heat flux in electronics requires the thermal management of printed circuit boards (PCBs) using two-phase cooling methods. In this study, an integrated ceramic heat transfer device, the alumina flat-plate oscillating heat pipe, is developed. The device was fabricated by pressing and sintering procedures, and the inner serpentine channels were simultaneously formed during sintering without brazing or separated caps. This novel manufacturing process simplifies the fabrication of the macrochannels inside ceramic devices and provides a new method for fabricating ceramic two-phase cooling devices. This paper presents an analysis of the internal channel’s formation mechanism and illustrates the major factors of densification. Micro-computed tomography (Micro-CT) scanning was adopted to assess the macrostructure, and SEM was used to characterize the microstructure of the alumina OHP. Water was charged inside the device as the working fluid. The effects of the power input, orientation, operating temperature and filling ratio on the heat transfer performance were investigated. The experimental results show that the alumina OHP has a high heat transport capability. When the OHP structure is embedded inside the alumina and charged with water, the thermal resistance can be reduced by 97%.

This content is only available via PDF.
You do not currently have access to this content.