Abstract

Understanding flow and heat transfer in porous media is a matter of prime concern for micro devices. In this work, slip flow and heat transfer of gaseous fluid through the confined porous media is numerically simulated using a multiple-relaxation-time lattice Boltzmann method. The method is employed using an effective curved boundary treatment based on non-equilibrium extrapolation and counter-extrapolation methods. Nusselt number prediction for varying porosity, Knudsen and Reynolds number are studied. Based on the obtained numerical results, it is proved that the current technique can be used to effectively model slip flow and heat transfer at pore-scale.

This content is only available via PDF.
You do not currently have access to this content.