In the industrial fabrication processes of density-graded closed-cell metallic foams, it is of great importance to control the solidification immediately after foams are formed so as to obtain the final products with well distributed density-graded pores and less defects. This paper presented an analytical work aiming to predict the solidification front of density-graded metallic foam under constant temperature boundary condition. Numerical simulations based on ideal density-graded circular pores demonstrated good agreement with the analytical solutions. The 2D porous morphology of a real density-graded aluminum foam was further reconstructed with microCT, on the basis of which the propagation of solidification front inside this real density-graded foam was numerically investigated. An equivalent shape factor for this real foam was calculated to provide an insight for the influence of different pore shapes on solidification. Compared with other pores, the solidification speed of elliptical pores (a common pore shape in real foams) is moderate, i.e., slower than circular pores but quicker than triangular pores for same porosity.
- Heat Transfer Division
Solidification Analysis of Density-Graded Closed-Cell Metallic Foam Under Constant Temperature Boundary Condition
Wang, WB, Yang, XH, Zhang, QC, & Lu, TJ. "Solidification Analysis of Density-Graded Closed-Cell Metallic Foam Under Constant Temperature Boundary Condition." Proceedings of the ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. Volume 2: Micro/Nano-Thermal Manufacturing and Materials Processing; Boiling, Quenching and Condensation Heat Transfer on Engineered Surfaces; Computational Methods in Micro/Nanoscale Transport; Heat and Mass Transfer in Small Scale; Micro/Miniature Multi-Phase Devices; Biomedical Applications of Micro/Nanoscale Transport; Measurement Techniques and Thermophysical Properties in Micro/Nanoscale; Posters. Biopolis, Singapore. January 4–6, 2016. V002T15A005. ASME. https://doi.org/10.1115/MNHMT2016-6719
Download citation file: