The three-dimensional forced convective heat transfer in a bi-porous metal foam heat sink is numerically investigated. Each of the metal foam layers has a distinct thickness, porosity, and pore density. The effects of these geometrical and morphological parameters on fluid flow and heat transfer are analyzed by employing the Forchheimer-Brinkman extended Darcy momentum equation and local thermal non-equilibrium energy equation. The numerical results show that the thermal resistance of the bi-porous metal foam heat sink is decreased with reduction in top layer metal foam porosity, as well as the bottom layer metal foam thickness, for a fixed bottom metal foam porosity of 0.9. The best thermal performance is achieved by employing a 30PPI metal foam at the bottom layer, and a 50PPI metal foam at the top layer. The optimal thickness of the bottom foam layer is about 1mm.

This content is only available via PDF.
You do not currently have access to this content.