In recent years, with the social progress and the rising of living standard, people have realized the importance of clean air. Microscale or nanometer photocatalyst has a certain application advantages in the purification of pollutants. Nano-TiO2 is one of novel promising environmental-friendly catalytic materials. However, the, only can absorb ultraviolet irradiation which accounts little in sunlight. Co-doping is beneficial in modifying TiO2. The synergistic action of dopants not only increased the activity of photocatalytic degradation, but also expanded the response range of light to the visible light region.

Ceramic tile is a kind of common building material, and has broad application to the outside and inside wall of buildings for decoration. If we carry nanometer TiO2on ceramic tiles, they can clear pollutants in indoor and outdoor air.

In this study, we prepared a TiO2 photocatalytic gel in advance by doping amount of N, F and/or Fe. Then we coated the gel on a kind of ceramic tile. After calcination we prepared a special ceramic tile with TiO2. The TiO2 was co-doped with N, F and Fe elements. The photo-catalytic activities of the ceramic tile samples under visible light irradiation were evaluated by the degradation of methylene blue solution. The result showed that the photocatalytic activity of the ceramic tile co-doped with TiO2 doped with 4wt % N, 0.06 wt% Fe, 0 wt% F, calcinated at 500°C, was the highest. The influence order of the factors was calcination temperature >Fe >F> N.

This content is only available via PDF.
You do not currently have access to this content.