The Present investigation has been carried out to study the performance of nano enhanced phase change material (NEPCM) based heat sink for thermal management of electronic components. Enthalpy based finite volume method is used for the analysis of phase change process in NEPCM. To enhance the thermal conductivity of phase change material (PCM), copper oxide nano particles of volume fractions 1%, 2.5% and 5% are added to PCM. A heat flux of 2500 W/m2 is taken as input to the heat sink. The thermal performance of the heat sink with PCM is compared with NEPCM for each volume fraction of nano particle for both finned and unfinned configurations. It is observed that the nano particle volume concentration plays a major role in removing the heat from the chip in case of unfinned heat sink configuration. However, for finned heat sink configuration, the volume concentration effect is not appreciable. In addition, the performance of NEPCM based finned heat sink is studied under cyclic loading in both natural and forced convection boundary conditions. It is observed that under forced convection the solidification time is reduced.

This content is only available via PDF.
You do not currently have access to this content.