An approach to design multi-channel cylinder dryer was proposed. The heat transfer performance and flow characteristic under various structural parameters were analyzed. First, an experiment was designed and set up to measure the condensing heat transfer coefficient and the pressure drop in order to verify the applicability of the Cavallini’s correlation. Then, the relationship among the count of channels, aspect ratio, spacing ratio, width, height and hydraulic diameter of a channel was given. Finally, the correlation of condensing heat transfer and the homogeneous model were introduced in order to observe the heat transfer performance and flow characteristic of the multi-channel cylinder dryer affected by different structures. The study reveals that the structural parameters including count of channels, aspect ratio, spacing ratio of a channel dramatically influence the condensation heat transfer coefficient and frictional resistance of the steam. Based on the selected paper machine, it is suggested that the overall performance of the multi-channel cylinder dryer is best if the count of channels is 150–200, the aspect ratio is 1:3 and the spacing ratio is 1:1–1:3.
- Heat Transfer Division
Study on Heat Transfer Performance Affected by Structural Parameters of Multi-Channel Cylinder Dryer
Yan, Y, Jixian, D, Wei, T, & Shiyuf, F. "Study on Heat Transfer Performance Affected by Structural Parameters of Multi-Channel Cylinder Dryer." Proceedings of the ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. Volume 2: Micro/Nano-Thermal Manufacturing and Materials Processing; Boiling, Quenching and Condensation Heat Transfer on Engineered Surfaces; Computational Methods in Micro/Nanoscale Transport; Heat and Mass Transfer in Small Scale; Micro/Miniature Multi-Phase Devices; Biomedical Applications of Micro/Nanoscale Transport; Measurement Techniques and Thermophysical Properties in Micro/Nanoscale; Posters. Biopolis, Singapore. January 4–6, 2016. V002T08A006. ASME. https://doi.org/10.1115/MNHMT2016-6693
Download citation file: