Phase change microencapsules are the microsized particles made of phase change materials (paraffin wax ect.) sealed by the thin shell (polymer ect.) via the methods of microencapsulation. During last decade, due to the large amount of melting/solidifying heat, much attention have been paid on their application in environmental control, building, textiles and electronics ect. Also the novel thermal fluids by phase change microencapsules suspending in the traditional thermal fluids have shown their superior heat storage density and convective heat transfer performance, which can behave as heat storage media and heat transfer media simultaneously. However, the density difference between the phase change microencapsules and tranditional unitary fluid would lead to the unstable suspending states which seriously affect the heat storage and heat transfer performance.

Binary mixtures such as alcohol-water etc have already played the important roles in the heat transfer equipments. In this paper, binary propanol-water mixtures of various proportion were formulated as the base fluids, and their stabilities were studied. The result shows that binary propanol-water mixtures with the desity of 941kg/m3 showed the best stability and no stratification was found after standing for 48 hours.

The morphology and diameter distribution of the microencapsule particles were tested by the scanning electron microscope (SEM) and Malvern Nanosizer respectively, and the result show that the diameter of the particles is in the range of 10–80μm with the average value of 26.4μm. The phase change enthalpy and the effective heat capacity of phase change microencapsule suspensions with the concentration of 10–40wt% were measured by the differencial scanning calorimeter (DSC) and it was found the phase change enthalpy of the phase change microencapsule is 152.8J/g and the undercooling is only 7.3°C. The effect of concentration and temperature on the rheological behavior and viscosities of suspensions were experimentally studied by the TA DHR-G2 rheometer. The result shows that the suspensions behave as Newtonian fluids even when the concentration is as high as 40wt% and the viscosities fit well with Vand model. By the Hot Disk 2500S thermal constant analyzer (Sweden), the thermal conductivities of 0–40wt% suspensions were tested at 20–70°C and the variation was analyzed further. The concentration and expansion of MPCM particles during the phase change period were found to affect the thermal expansion coefficient of the MPCM suspensions obviously. The above experimental result and analyzation of stability and thermophysical properties will provide a complete and important data for the application in heat storage and heat transfer.

This content is only available via PDF.
You do not currently have access to this content.