The aim of this paper is to develop a theoretical model of a piezoelectric valve-less micropump for liquid delivery with entrapped gas bubbles and evaluate the influence of gas bubbles on the dynamic characteristics of the micropump by using this model. In the model, we consider the vibration of piezoelectric diaphragm, the pressure loss through the nozzle/diffuser and the compressibility of working liquids with entrapped gas bubbles. In order to validate the developed model and make it useful as a design and prediction tool, experimental studies are carried out to investigate the flow rate and dynamic pressure inside the pump chamber when gas bubbles are absent or present in the micropump. The presence of gas bubbles inside the pump chamber is also observed with a high-speed video camera. The outlet flow rate of the micropump with different size of trapped gas bubbles are calculated and compared.

This content is only available via PDF.
You do not currently have access to this content.