Gas flow through arrays of rectangular nano-fins is modeled using the linearized free-molecular drag and heat transfer equations. These are combined with the one-dimensional equations for conservation of mass, momentum, and energy, and the ideal gas law, to find the governing equations for flow through the array. The results show that the pressure gradient, temperature, and local velocity of the gas are governed by coupled ordinary differential equations. The system of equations is solved for representative arrays of nano-fins to find the total heat transfer and pressure drop across a 1 cm chip.

This content is only available via PDF.
You do not currently have access to this content.