Thermoelectrics have the potential to become an alternative power source for distributed electrical generation as they could provide co-generation anywhere thermal gradients exist. More recent material and manufacturing advances have further suggested that thermoelectrics could independently generate primary power [1]. However, due to cost, manufacturability, abundance, and material performance, the full potential of thermoelectrics has yet to be realized. In the last decade, thermoelectric material improvements have largely been realized by diminishing thermal conductivities via nanostructuring without sacrificing performance in electrical transport [2]. An alternative approach is to decouple and optimize the electrical conductivity and thermopower using the unique properties of organic-inorganic interfaces [3]. One method to do this could leverage the electrical properties of a conducting polymer in combination with the thermoelectric proprieties of an inorganic semiconductor in such a way that the interaction between these materials breaks mixture theory. Furthermore, it is expected that the thermal conductivity of this hybrid material would be low due to the inherent vibration mode mismatch between polymers and inorganics. Previously, we have developed a method for producing a solution-processable thermoelectric material suitable for thin film applications using a hybrid polymer-inorganic systems consisting of crystalline tellurium nanowires coated in a thin layer of a conducting polymer (i.e., PEDOT:PSS) [4]. The interfacial properties could be realized in bulk and films demonstrate enhanced transport properties beyond those of either component. More recently, we have been able to significantly improve the thermoelectric properties of these materials by morphological and chemical modifications. Here, we present our methodology and experimental transport properties of this new material where the thermal conductivity, electrical conductivity, and thermopower predictably vary as a function of composition, size, and the structural conformation caused by the solvent. The mechanism for these improvements is currently under investigation, but experimental results suggest that transport is dominated by interfacial phenomena. Furthermore, experiments suggest that both the electrical conductivity and thermopower can be independently increased without appreciably increasing the thermal conductivity. These improvements, in concert with the solution processable nature of this material, make it ideal for new thermoelectric applications.

This content is only available via PDF.
You do not currently have access to this content.