Near-field radiative heat transfer between dielectric-based metamaterials separated by a sub-wavelength vacuum gap is analyzed. Metamaterials made of silicon carbide spherical inclusions within a dielectric host medium of potassium bromide are considered. We show for the first time that surface polariton mediated near-field radiative heat transfer in both TE and TM polarizations may occur between dielectric-based structures. The results presented in this work also demonstrate that it is possible to engineer materials with designer radiative properties, which is crucial in many emerging energy conversion technologies.

This content is only available via PDF.
You do not currently have access to this content.