Heat transfer between nanostructured surfaces separated by a thin gas film is studied in the free-molecular flow and in the transition regime. Besides topographic features the surfaces are characterized by regions with different boundary conditions displaying either diffuse or specular reflection of the molecules. The thermal conductivity of the materials on both sides of the gas film is assumed to be very high such that isothermal conditions may be applied at both surfaces. We analyze the problem using a combination of analytical techniques in the free-molecular flow regime and Monte-Carlo simulations. Under certain conditions, when the surfaces are held at different temperatures heat transfer is accompanied by a transfer of momentum such that a force is created parallel to the surfaces. This force can be significant and vanishes in the classical regime when the continuum transport equations can be applied. It is only observed if the reflection symmetry in a direction parallel to the surfaces is broken. We derive an analytical expression for the thermally-induced force as a function of the geometric parameters characterizing the surface topography and compare the results to Monte-Carlo simulations. The latter provide numerical solutions of the Boltzmann equation both in the free-molecular flow and in the transition regime. The scenario studied points to a novel method for conversion of thermal into kinetic energy and may find applications in small-scale energy converters.
Skip Nav Destination
ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer
December 18–21, 2009
Shanghai, China
Conference Sponsors:
- Nanotechnology Institute
ISBN:
978-0-7918-4391-8
PROCEEDINGS PAPER
Coupling of Heat and Momentum Transfer Between Nanostructured Surfaces
Alexander A. Donkov,
Alexander A. Donkov
Technische Universita¨t Darmstadt, Darmstadt, Germany
Search for other works by this author on:
Steffen Hardt,
Steffen Hardt
Technische Universita¨t Darmstadt, Darmstadt, Germany
Search for other works by this author on:
Sudarshan Tiwari,
Sudarshan Tiwari
Technische Universita¨t Kaiserslautern, Kaiserslautern, Germany
Search for other works by this author on:
Axel Klar
Axel Klar
Technische Universita¨t Kaiserslautern, Kaiserslautern, Germany
Search for other works by this author on:
Alexander A. Donkov
Technische Universita¨t Darmstadt, Darmstadt, Germany
Steffen Hardt
Technische Universita¨t Darmstadt, Darmstadt, Germany
Sudarshan Tiwari
Technische Universita¨t Kaiserslautern, Kaiserslautern, Germany
Axel Klar
Technische Universita¨t Kaiserslautern, Kaiserslautern, Germany
Paper No:
MNHMT2009-18061, pp. 49-52; 4 pages
Published Online:
October 26, 2010
Citation
Donkov, AA, Hardt, S, Tiwari, S, & Klar, A. "Coupling of Heat and Momentum Transfer Between Nanostructured Surfaces." Proceedings of the ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer, Volume 3. Shanghai, China. December 18–21, 2009. pp. 49-52. ASME. https://doi.org/10.1115/MNHMT2009-18061
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
Simulation of Thermal Transport in Open-Cell Metal Foams: Effect of Periodic Unit-Cell Structure
J. Heat Transfer (February,2008)
Turbulent Rotating Rayleigh–Benard Convection: Spatiotemporal and Statistical Study
J. Heat Transfer (February,2009)
Anisotropic Heat Conduction Effects in Proton-Exchange Membrane Fuel Cells
J. Heat Transfer (September,2007)
Related Chapters
Laminar Fluid Flow and Heat Transfer
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine
Experimental Investigation of an Improved Thermal Response Test Equipment for Ground Source Heat Pump Systems
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Antilock-Braking System Using Fuzzy Logic
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3