An experimental system of flat plate pulsating heat pipe was established and experimental research was carried out in this system to understand the mechanism of heat transfer and operating characteristics. The effects of start-up time, operating characteristics, and structures of passage, incline angle, fill ratio and working fluid on plate pulsating heat pipe were discussed. The results indicate that temperature of heating section decreases and the temperature of cooling section increases, then the thermal resistant of PHP is decreased once the plate pulsating heat pipe starts to work. Different start-up powers are needed for different fill ratios and incline angles. The inter pressure of PHP has some impacts on the start-up and operation of PHP. The pulsating heat pipes with different structures have different heat transfer performance. Increasing cross-sectional area and the number of turnings of the heat pipe can improve the heat transfer characteristics of heat pipes. Cross-section shape was also an important influencing factor. With the same cross-sectional area, heat pipe with triangular cross-section of the inner tubes gives better performance than that with rectangular cross-section.

This content is only available via PDF.
You do not currently have access to this content.