The bubble dynamics of ethanol vapor bubbles growing, coalescing and condensing in a subcooled ethanol liquid pool were investigated experimentally and numerically for a range of subcoolings and heating rates. The bubbles were generated from an artificial pair of nucleation sites made of microscale tubes mounted flush with the bottom surface of the liquid pool with the vapor supplied by a vapor generator. Observations of the bubble generation with a high speed camera show the various coalescence modes with no coalescence at low heating rates and high subcoolings and horizontal and/or vertical coalescence depending on the heating rate and subcooling. At very low subcoolings, the bubbles grew quite large with various types of coalescence. The numerical results using solutions of the Navier-Stokes equations with the VOF model and using a simplified one dimensional model also describe the bubble dynamics and the conditions for coalescence. The numerical results suggest that the condensation rate at the interface is probably much higher than predicted by the model due to significant convection in the liquid pool or due to significant disturbance of the interface by the vapor jet entering the bubble.

This content is only available via PDF.
You do not currently have access to this content.