The aim of the present study is to investigate the thermal fluid flow transport phenomenon of nanofluids in the heated horizontal circular tube. Consideration is given to the effects of volume fraction of the nanoparticle and Reynolds number on the turbulent heat transfer and pressure loss. Diamond, alumina (Al2O3) and oxide copper (CuO) are employed here as nanoparticles. It is found that (i) the viscosity of nanofluids increases with an increase in the volume fraction of nanoparticles dispersed in the working fluid, (ii) the pressure loss of nanofluids increases slightly in comparison with that of pure fluid and (iii) enhancement heat transfer performance is caused by suspending nanoparticles except for the case of large particle aggregation.

This content is only available via PDF.
You do not currently have access to this content.