The design and fabrication of a microfabricated fluidic device for particle thermophoresis is presented. The ability of the device to concentrate particles by generating a huge thermal gradient is demonstrated. In contrast to other microfluidics devices which use electrokinetics or pressure driven flow, in this device no external force acts on the particles. The separator device has been fabricated in a standard silicon substrate, consisting of a 20 μm deep channel and a 600 nm thick aluminum heater integrated into the device. The device is able to create a thermal gradient of approximately 104 Km−1. To maintain a thermal gradient over a long period, special attention had to be given to the design of the integrated heater and thermal insulation of the channel. In order to deposit the aluminum heater on the side wall of a micro channel, a silicon substrate was wet etched in KOH solution, forming sloping sidewalls. The temperature difference was measured using a thermocouple mounted on the two sides of the channel walls, showing about 2 K temperature difference. Experimental studies have been conducted in order to study the motion of particles in response to the thermal gradient. Particle motions are recorded before and after turning on the heater. Using polystyrene latex particles suspended in de-ionized water, it is shown that 90% of particles are concentrated on the cold side of the channel after 300 seconds using only 1W of electrical power. Apart from its applicability to particle suspensions, this device also has a great potential for DNA molecule concentration and separation in bio-chemical analysis.
Skip Nav Destination
ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer
December 18–21, 2009
Shanghai, China
Conference Sponsors:
- Nanotechnology Institute
ISBN:
978-0-7918-4389-5
PROCEEDINGS PAPER
Microfabricated Thermal Gradient Separator Device
Saputra,
Saputra
Delft University of Technology, Delft, The Netherlands
Search for other works by this author on:
P. F. Geelhoed,
P. F. Geelhoed
Delft University of Technology, Delft, The Netherlands
Search for other works by this author on:
J. F. L. Goosen,
J. F. L. Goosen
Delft University of Technology, Delft, The Netherlands
Search for other works by this author on:
R. Lindken,
R. Lindken
Delft University of Technology, Delft, The Netherlands
Search for other works by this author on:
J. Westerweel,
J. Westerweel
Delft University of Technology, Delft, The Netherlands
Search for other works by this author on:
F. van Keulen
F. van Keulen
Delft University of Technology, Delft, The Netherlands
Search for other works by this author on:
Saputra
Delft University of Technology, Delft, The Netherlands
P. F. Geelhoed
Delft University of Technology, Delft, The Netherlands
J. F. L. Goosen
Delft University of Technology, Delft, The Netherlands
R. Lindken
Delft University of Technology, Delft, The Netherlands
J. Westerweel
Delft University of Technology, Delft, The Netherlands
F. van Keulen
Delft University of Technology, Delft, The Netherlands
Paper No:
MNHMT2009-18543, pp. 379-386; 8 pages
Published Online:
October 26, 2010
Citation
Saputra, , Geelhoed, PF, Goosen, JFL, Lindken, R, Westerweel, J, & van Keulen, F. "Microfabricated Thermal Gradient Separator Device." Proceedings of the ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer, Volume 1. Shanghai, China. December 18–21, 2009. pp. 379-386. ASME. https://doi.org/10.1115/MNHMT2009-18543
Download citation file:
12
Views
Related Proceedings Papers
Related Articles
Measurements of the Heat Conductivity of Nitrogen–Carbon Dioxide Mixtures
Trans. ASME (July,1951)
Patterns of Natural Convection Around a Square Cylinder Placed Concentrically in a Horizontal Circular Cylinder
J. Heat Transfer (May,1983)
Thermoelastic Contact Between Bodies With Wavy Surfaces
J. Appl. Mech (December,1979)
Related Chapters
Transient Heat Transfer with Little or No Temperature Gradient within Special Solids
Case Studies in Transient Heat Transfer With Sensitivities to Governing Variables
Stress Relieving a Copper Alloy Rod by Radiant Heating When Temperature Gradients Within The Rod are Negligible
Case Studies in Transient Heat Transfer With Sensitivities to Governing Variables
Risk to Space Shuttle Orbiter Windows from Particles in the Booster Separation Motor Plumes and from Foam Debris (PSAM-0178)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)