Understanding the effects of acoustic vibration on micro thermal bubble dynamics in a microchannel is the key to develop acoustic-thermal-bubble based microfluidic devices. For that purpose, in the current research, a series of experiments were carried out to study the acoustic-thermal-bubble dynamics in a microchannel. The thermal bubble was generated by a micro heater which was fabricated by MEMS (Micro-Electro-Mechanical-System) technique. Using a high-speed digital camera, the thermal bubble dynamics was studied in two different conditions: normal condition and acoustic condition. Through theoretical analysis, the whole bubble dynamic process in two conditions can be roughly divided into four steps, which are bubble nucleation, satellite bubbles movement, bubble evolution, and bubble shrinkage and remove. The effects of acoustic vibration on all these four steps were found to be significant. The mechanisms behind these effects are discussed by analyzing the high speed video recording results. The current experimental investigation has some potential applications in microfluidic devices, and a prototype of micro mixer based on acoustic-thermal-bubble was successfully tested.

This content is only available via PDF.
You do not currently have access to this content.