Micro Air Vehicles (MAVs) have advantages of small size, low cost, flexibility and controllability etc., so they will be applied widely in military and civilian fields. They have obviously low Reynolds number aerodynamics, which is different from traditional aircrafts. In this paper, numerical simulation based on fluid-structure interaction for flexible wing MAVs is presented. Flexible wings are composed of carbon frames and covered with membrane skins. Because flexible wing MAVs easily deform in airflow, both structure model and fluid model should be built. The two models are connected by interfaces of membrane wings, which transmit distributed pressure and deformations of membrane wings. When membrane wings are located in airflow, they will deform with actions of surrounding airflow. Deformation of membrane wings also affects airflow and pressure distributed on the wings’ surfaces will also be changed relatively, which will compel the shape of membrane wings to be changed once more. Therefore, numerical simulation of flexible wing MAVs is not only the analysis of fluid field, but also the structure deformation effects. Navier-Stokes Equations are nonlinear and complicated, so direct interaction of fluid and structure equations is rather difficult and costs too much time. Indirect interaction method is more feasible and it is adopted in this paper. Structure deformation and distributed pressure on membrane wings surfaces are calculated separately, and then pressure distribution from fluid solver is transmitted to structure solver. After structure deformation is calculated in structure solver, it will be transmitted to fluid field again. Iteration goes on in this way and finally converges. Simulation results show the deformation, stress and pressure distribution of flexible wings. All these results are good reference for MAVs design, modification and wind tunnel experiments generally.
Skip Nav Destination
2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
January 10–13, 2007
Sanya, Hainan, China
Conference Sponsors:
- Nanotechnology Institute
ISBN:
0-7918-4265-7
PROCEEDINGS PAPER
Numerical Simulation of Micro Air Vehicles With Membrane Wings
Xiaoqin Zhang,
Xiaoqin Zhang
Tsinghua University, Beijing, China
Search for other works by this author on:
Ling Tian
Ling Tian
Tsinghua University, Beijing, China
Search for other works by this author on:
Xiaoqin Zhang
Tsinghua University, Beijing, China
Ling Tian
Tsinghua University, Beijing, China
Paper No:
MNC2007-21265, pp. 459-462; 4 pages
Published Online:
June 8, 2009
Citation
Zhang, X, & Tian, L. "Numerical Simulation of Micro Air Vehicles With Membrane Wings." Proceedings of the 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B. Sanya, Hainan, China. January 10–13, 2007. pp. 459-462. ASME. https://doi.org/10.1115/MNC2007-21265
Download citation file:
3
Views
Related Articles
Effects of Cyclic Motion on Coronary Blood Flow
J Biomech Eng (December,2013)
A Review of Full Eulerian Methods for Fluid Structure Interaction Problems
J. Appl. Mech (January,2012)
Steady Turning Stability of Partially Filled Tank Vehicles With Arbitrary Tank Geometry
J. Dyn. Sys., Meas., Control (September,1989)
Related Chapters
Applications
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Effect of Solid Surface Wettability on the Formation of Cavitating Wave Front with Fluid-Structure Interaction
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Fluid-Structure Interaction in Cavitation Erosion
Proceedings of the 10th International Symposium on Cavitation (CAV2018)