By shrinking a roomful of laboratory equipments and packing them into a palm-size chip, single Lab-on-a-chip devices are capable of performing a variety of chemical and biological analyses with reduction of reagent consumption, waste production, analysis time and labor cost. However, difficulties in packaging and assembly have been major challenging issues in the manufacture of Lab-on-a-chip devices. To tackle this problem, we recently combined the 3D femtosecond (fs) laser microfabrication technique and the multifunctionality of a photosensitive glass called Foturan. This development enables us to form various true 3D hollow microstructures inside or on the surface of Foturan glass with one continuous processing. Using this technique, a variety of micro-chemical reactor structures, including microchannels, microchambers, and microvalves, have been fabricated inside Foturan glass with an approximate spatial resolution of 10μm. Since the microstructuring of Foturan glass by fs laser is a non-ablative photochemistry processing, the fabricated internal surface is smooth and free of debris and cracks. The smooth surfaces can thus be used as microoptical elements to effectively reflect/deflect light beams. For the purpose of further smoothening the etched internal surface, we applied an additional annealing to the samples after etching by which the average roughness was brought down to ∼0.8nm on the laser scanned surface. Thus, we are able to fabricate microoptical mirrors, micro-beam splitters, freestanding optical fibers, and microoptical lenses in the glass. We have also demonstrated the functions of all these structures using a He-Ne laser. Functional micro-devices such as microfluidic dye lasers were successfully fabricated by integrating the microoptical and microfluidic components inside the glass, and lasing action was confirmed by analyzing the emission spectra at different pumping powers. The commercial potential of this technique is also discussed in this paper.
Skip Nav Destination
2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
January 10–13, 2007
Sanya, Hainan, China
Conference Sponsors:
- Nanotechnology Institute
ISBN:
0-7918-4265-7
PROCEEDINGS PAPER
Hybrid Integration in Photosensitive Glass Using 3D Femtosecond Laser Micromachining and Its Commercial Potential Available to Purchase
Ya Cheng,
Ya Cheng
Chinese Academy of Sciences, Shanghai, China
Search for other works by this author on:
Zhizhan Xu
Zhizhan Xu
Chinese Academy of Sciences, Shanghai, China
Search for other works by this author on:
Ya Cheng
Chinese Academy of Sciences, Shanghai, China
Zhizhan Xu
Chinese Academy of Sciences, Shanghai, China
Paper No:
MNC2007-21365, pp. 1407-1416; 10 pages
Published Online:
June 8, 2009
Citation
Cheng, Y, & Xu, Z. "Hybrid Integration in Photosensitive Glass Using 3D Femtosecond Laser Micromachining and Its Commercial Potential." Proceedings of the 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B. Sanya, Hainan, China. January 10–13, 2007. pp. 1407-1416. ASME. https://doi.org/10.1115/MNC2007-21365
Download citation file:
7
Views
Related Articles
Thermal and Manufacturing Design Considerations for Silicon-Based Embedded Microchannel Three-Dimensional-Manifold Coolers (EMMC)—Part 3: Addressing Challenges in Laser Micromachining-Based Manufacturing of Three-Dimensional-Manifolded Microcooler Devices
J. Electron. Packag (September,2020)
Biochip for Single Cell Analysis Using Laser Microfabrication
J. Med. Devices (June,2016)
Related Chapters
Testing the Drift Reduction Potential of Some Adjuvants from Renewable Sources for Aerial Pesticide Applications
Pesticide Formulation and Delivery Systems: 43rd Volume, Creating Certainty in an Uncertain World
The Thermo —Mechanical Analysis of Mechanical Packing (SEAL), Using Finite Element Method (FEM) — Results and Conclusions
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)
Natural Gas Transmission
Pipeline Design & Construction: A Practical Approach, Third Edition