This paper presents our recent works on thermal control for droplet-based microfluidics. Temperature dependent properties of liquids have been use for actuation and many other applications in droplet-based microfluidics. In analogy to an analog/digital electronic circuits, a droplet-based microfluidic system consists for three main subsystems: droplet formation (analog/digital converter), droplet manipulation (digital processing) and droplet merging (digital/analog converter). This paper will present our recent achievements in thermal control of droplet formation in different configurations such as T-junction and cross junction with integrated microheaters. Furthermore, results on droplet switching will be presented. The droplet switch represent basic logic gate that can be used to construct a more complex droplet-based digital network. Thermocapillary actuation of microdroplets in one-dimensional and two-dimensional microfluidic platforms will be presented. Both numerical and experimental results will be presented in this paper.

This content is only available via PDF.
You do not currently have access to this content.