Experiments have demonstrated thermocapillary actuation on uniformly grafted partial-wettable surfaces. Droplet mobilization only occurs above a threshold thermal gradient or threshold droplet radius [1]. We characterized the motion instead in terms of a threshold depinning force, which successfully describes all the liquids tested. Above the depinning transition, the droplet speed, which is controlled by thermocapillary, capillary and viscous forces, increases monotonically with this reduced force parameterization. These results agree well to numerical predictions of a generalized Ford and Nadim model by using two fitting parameters, the slip coefficient and the magnitude of contact angle hysteresis [2–3]. In this follow-up study, we developed a doubly grafted surface, on which alkyltrichlorosilane coated stripes are surrounded by a more hydrophobic coating, perfluoroctyl-trichlorosilane. The quality of alkyltrichlorosilane coated stripes was still good for the thermocapillary droplet actuation, in which droplets were driven on the alkyltrichlorosilane surface and confined by the perfluoroctyl-trichlorosilane. The experimental results are also well described by a derived approximate three-dimensional model equation, which resembles the parameterization. The droplets are driven by thermocapillary force and retarded by contact angle hysteretic force, represented as contact angle hysteresis. This contact angle hysteresis is caused by chemical heterogeneity, surface roughness etc [4]. In the last part of this presentation, we will also present the thermocapillary droplet motion on a designed defected surface, which shows a tiny defect can severely hinge the droplet.
Skip Nav Destination
2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems
June 3–5, 2008
Clear Water Bay, Kowloon, Hong Kong
Conference Sponsors:
- Nanotechnology Institute
ISBN:
0-7918-4294-0
PROCEEDINGS PAPER
Thermally Actuated Droplet Motion on Chemically Homogeneous, Striated, and Defected Surfaces Available to Purchase
Jian-Zhang Chen
Jian-Zhang Chen
National Taiwan University, Taipei, Taiwan
Search for other works by this author on:
Jian-Zhang Chen
National Taiwan University, Taipei, Taiwan
Paper No:
MicroNano2008-70096, pp. 495-496; 2 pages
Published Online:
June 12, 2009
Citation
Chen, J. "Thermally Actuated Droplet Motion on Chemically Homogeneous, Striated, and Defected Surfaces." Proceedings of the 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems. 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems. Clear Water Bay, Kowloon, Hong Kong. June 3–5, 2008. pp. 495-496. ASME. https://doi.org/10.1115/MicroNano2008-70096
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
Preliminary Testing of Metal-Based Thermal Barrier Coating in a Spark-Ignition Engine
J. Eng. Gas Turbines Power (July,2010)
Optimization of Al 2 O 3 and TiO 2 Blends to be Used as Erosion Resistant Coating for Mild Steel
J. Tribol (October,2020)
Related Chapters
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Gas-Fluidized Beds
Two-Phase Heat Transfer
Chitosan-Based Drug Delivery Systems
Chitosan and Its Derivatives as Promising Drug Delivery Carriers