Nucleate boiling performance was enhanced up to an order of magnitude through direct deposition of Cu nanorods on a planar Cu surface. The methodology that enables order of magnitude improvement in boiling performance without fabricating complicated surface structures or changing the working fluid will have broad impact on metal-liquid type two-phase heat exchangers. In this study, discussion was focused on bubble dynamics on the nanostrucured Cu surfaces. We observed striking differences in bubble dynamics through nucleation boiling process for the nanostructured surface including smaller bubble diameters, higher release frequencies and nucleation site density, and large fluctuations in bubble diameter prior to release. These differences during the boiling process are responsible for the enhanced heat transfer. High quality images were captured through a well-designed visualization system, which comprises of a high-speed charge-coupled device (CCD) camera, microscope and data acquisition system. This visualization study aims to quantitatively study the bubble dynamics on the nanostructured Cu surfaces.

This content is only available via PDF.
You do not currently have access to this content.