In this paper the boundary layer flow over a flat plat with slip flow and constant heat flux surface condition is studied. Because the plate surface temperature varies along the x direction, the momentum and energy equations are coupled due to the presence of the temperature gradient along the plate surface. This coupling, which is due to the presence of the thermal jump term in Maxwell slip condition, renders the momentum and energy equations non similar. As a preliminary study, this paper ignores this coupling due to thermal jump condition so that the self-similar nature of the equations is preserved. Even this simplified problem for the case of a constant heat flux boundary condition has remained unexplored in the literature and was therefore chosen for study in this paper. For the hydrodynamic boundary layer, velocity and shear stress distributions are presented for a range of values of the parameter characterizing the slip flow. This slip parameter is a function of the local Reynolds number, the local Knudsen number, and the tangential momentum accommodation coefficient representing the fraction of the molecules reflected diffusively at the surface. As the slip parameter increases, the slip velocity increases and the wall shear stress decreases. These results confirm the conclusions reached in other recent studies. The energy equation is solved to determine the temperature distribution in the thermal boundary layer for a range of values for both the slip parameter as well as the fluid Prandtl number. The increase in Prandtl number and/or the slip parameter reduces the dimensionless surface temperature. The actual surface temperature at any location of x is a function of the local Knudsen number, the local Reynolds number, the momentum accommodation coefficient, Prandtl number, other flow properties, and the applied heat flux.

This content is only available via PDF.
You do not currently have access to this content.