The stress distribution on open-ended Carbon Nanotubes (CNTs) embedded in a composite material is considered in this work and an analytical solution for the stress distribution has been obtained. The effects of CNT’s thickness and CNT’s length on the distribution of stress have been investigated. To find the governing relations, continuity equations of the axisymmetric problem in cylindrical coordinate (r,θ,z) are used. Under some assumptions, the governing equations are solved and by using constitutive equations and applying the boundary conditions, an equation which relates the stress applied to the representative volume element with the stress distribution on the CNT, has been found. The analytical solution has been applied to three different CNTs. The results for the open-ended CNTs have been compared with the results for closed-ended ones.

This content is only available via PDF.
You do not currently have access to this content.